
Privacy-Preserving Joins in
Untrusted Environments

Kajetan Maliszewski
PhD Defense
4. April 2025

Three states of data matter

2

At-rest In-transit In-use

Three states of customer’s sensitive data in public cloud

3

SW

HW

Trusted Execution Environments (TEEs)

4

Advantages over other PETs:New hardware design:

OS

VMM Apps

Host

Performance

Enhanced functionality

Ease of deployment

Adoption of TEEs has been a bumpy road

5

Disadvantages over plain CPU:Simple things get complex:

OS

VMM Apps

Host

��

��

Challenging hardware architecture

Performance bottlenecks

Security considerations

��

6

Thesis Goal
Analyze and improve the privacy-performance trade-off

of TEEs in batch and stream join workloads

Multi-tenant scenario:

Joins in TEEs can significantly underperform

Contributions

7

Problem

Adoption of TEEs

Solution

Equi-joins in TEEs

VLDB 2022

Efficient Query
Processing in TEEs

Cracking-Like Join

VLDB 2023

Privacy-Preserving
Stream Processing

Privacy-Preserving
Stream Joins

under
submission

Honest-but-curious
adversary

P1/P2
“operational” confidentiality

in batch processing

P3
 + side-channel protection

in stream processing

Agenda

1. Motivation
2. Understanding equi-joins in TEEs
3. Relational Join for TEEs
4. Privacy-preserving stream joins
5. Conclusions

8

Performance of equi-joins in TEEs is an open challenge

9

TEEs High Performance

? Multi-tenant scenario:

We benchmarked four families of join algorithms

10

hash-based
CHT Concise Hash Table

PHT Parallel Hash Table

sort-merge
PSM Parallel Sort-Merge

MWAY Multi-Way Sort-Merge

radix-based

RHT Radix Hash Table

RHO Radix Hash Optimized

RSM Radix Sort-Merge

nested-based INL Index Nested Loop

Fa
m

ily
Join Algorithm

TeeBench is a fair referee for enclave benchmarks

11

We used TeeBench in all
subsequent works

Plug & Play experience

How to manage your memory?

12

CHT throughput

CPU Registers

L1-L3 Cache

SGX memory model

Secure Cache (EPC)

Main Memory

EPC paging

Lesson learned
Never exceed EPC memory

lockless Radix Join

How to do multi-threading?

13

CHT

RHO

Mutex is a new bottleneck

Non-blocking primitives avoid
OS interaction

Lesson learned
Design wait-free algorithms

Concise Hash Table

Radix Join

We call for TEE-native solutions

14

Findings Summary

We provide 7 lessons learned

None of the joins is a good choice

TEE-native approaches offer
promising results

Agenda

15

1. Motivation
2. Understanding equi-joins in TEEs
3. Relational Join for TEEs
4. Privacy-preserving stream joins
5. Conclusions

Desiderata for TEE-native processing

16

Sequential
access
patterns

Low memory
consumption

Wait-free
algorithms

Cracking-Like Philosophy

17

bit by bit in-place radix sort arbitrary computation

crack compute

● Partition the data
● Perform sequential scans
● Consume little memory
● TBD: Barrier-free execution

Two new primitives perform the Cracking-Like Join

18

Stage is a computation primitive

……

p0

in-place
swap

p1

 p0,p1

Cracking Tree is a storage
primitive

scan direction

Cracking-Like Join algorithm

19

Partitioned relation forms independent chunks

20

CrkJoin outperforms the baselines in a multi-tenant
scenario

21

over PaMeCo

over RHO

over MCJoin

CrkJoin scales in multi-core architectures

22

PaMeCo

RHO

MCJoin

CrkJoin

Findings summary

23

Efficient query processing in TEEs is
possible

Our algorithm achieves up to 1000x
higher performance

CrkJoin scales to multiple cores

Agenda

24

1. Motivation
2. Understanding equi-joins in TEEs
3. Relational Join for TEEs
4. Privacy-preserving stream joins
5. Conclusions

Stream join is a dynamic bipartite graph problem

25

Stream Enc(Web clicks)Stream Enc(Users)

VR(t) VS(t)
E(t)

G(t) = (VR(t), VS(t), E(t))

Stream join is a dynamic bipartite graph problem

26

VR(t) VS(t)
E(t)

We protect data-dependent
information (i.e., graph

componentes)

Stream Enc(Users) Stream Enc(Web clicks)

G(t) = (VR(t), VS(t), E(t))

Stream join is a dynamic bipartite graph problem

27

VR(t) VS(t)
E(t)

Two
matches

We protect data-dependent
information (i.e., graph

componentes)

Stream Enc(Users) Stream Enc(Web clicks)

G(t) = (VR(t), VS(t), E(t))

Stream join is a dynamic bipartite graph problem

28

VR(t) VS(t)
E(t)

Equality

We protect data-dependent
information (i.e., graph

componentes)

Stream Enc(Users) Stream Enc(Web clicks)

G(t) = (VR(t), VS(t), E(t))

Stream join is a dynamic bipartite graph problem

29

VR(t) VS(t)
E(t)

Total
matches

We protect data-dependent
information (i.e., graph

componentes)

Stream Enc(Users) Stream Enc(Web clicks)

G(t) = (VR(t), VS(t), E(t))

Stream join is a dynamic bipartite graph problem

30

Stream constraints

VR(t) VS(t)
E(t)

G(t) = (VR(t), VS(t), E(t))

We allow for
data-independent leakage

We protect data-dependent
information (i.e., graph

componentes)

Stream Enc(Users) Stream Enc(Web clicks)

We introduce a taxonomy of five leakage functions

31

L0: deterministic confidentiality Leak the entire join graph and its history.
Comparable with deterministic

encryption

What the adversary sees Informal definition

We introduce a taxonomy of five leakage functions

32

L0: deterministic confidentiality Leak current join graph and volume
patterns, while hiding the graph history.

Similar to randomized encryption.

L1: randomized confidentiality

Informal definitionWhat the adversary sees

We introduce a taxonomy of five leakage functions

33

L0: deterministic confidentiality For every tuple leak only the
volume pattern.

L1: randomized confidentiality

L2: oblivious lookups

Informal definitionWhat the adversary sees

We introduce a taxonomy of five leakage functions

34

L0: deterministic confidentiality For every batch of tuples leak the
intermediate join result cardinality.

L1: randomized confidentiality

L2: oblivious lookups

L3: oblivious batching

Informal definitionWhat the adversary sees

We introduce a taxonomy of five leakage functions

35

L0: deterministic confidentiality Leak no information about the data
or access patterns.

L1: randomized confidentiality

L2: oblivious lookups

L3: oblivious batching

L4: full obliviousness

Informal definitionWhat the adversary sees

We propose two families of stream joins secure against all
leakage functions

36

Oblivious Symmetric Hash
Joins

● SHJ-L0
● SHJ-L1
● SHJ-L2
● SHJ-L3
● SHJ-L4

Oblivious Computation
Approach Joins

FK joins:
● OCA-L2
● MERG-L3/L4
● SORT-L3/L4

non-FK joins:
● JOIN-L2/L3

micro-batching
mode

How to avoid oblivious sorting?

37

Solution
Maintain the collections

sorted

Problem
Oblivious joins heavily

rely on OSort

(1,1)
(1,1)
(2,2)

(R ∪ S)
key table

1 R
1 S
1 S
2 R
2 S
3 R

How to obliviously append to a sorted collection?

38

m

n

micro-batch

window

m

n

m

n

n-m
n+m

1 OSort micro-batch

2 Append dummies

3 OMerge

4 Trim dummies1 2 3 4

OblivAppend

If n >> m: O(nlogn)

Problem setup
1. window is sorted
2. batch is unsorted
3. n >> m
4. OSort is O(nlog2n)

OblivAppend as a FK-join building block

39

m

n

micro-batch

window

m

n

m

n

n-m
n+m

1 OSort micro-batch

2 Append dummies

3 OMerge

4 Trim dummies1 2 3 4

OblivAppend

Emit join matches

FK join

5

5

<key,tid>

MERG-L4
Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:

40

R

WR

S

WS

MERG-L4 foreign-key join

MERG-L4
Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:

41

R

WR ∪
R

S

1

WS

MERG-L4 foreign-key join

MERG-L4
Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:

42

R

WR ∪
R

S

2

WS

⨝

|S|

MERG-L4 foreign-key join

MERG-L4
Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:

43

R

WR ∪
R

WS

S

3

⨝
|WS|

MERG-L4 foreign-key join

MERG-L4
Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:

44

R

WR ∪
R

WS

S

4 Housekeeping

MERG-L4 foreign-key join

MERG-L4
Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:

45

R

WR ∪
R

WS

S
Security: all operations are oblivious
Performance: O(nlogn)

MERG-L4 foreign-key join

Privacy cost in oblivious stream joins

46

Privacy without obliviousness has
negligible overhead

Privacy cost in oblivious stream joins

47

Privacy without obliviousness has
negligible overhead

OCA joins perform well, while
maintaining low latency

Privacy cost in oblivious stream joins

48

Privacy without obliviousness has
negligible overhead

OCA joins perform well, while
maintaining low latency

Oblivious index-based solutions
significantly underperform

Contributions summary

49

Oblivious stream join problem
definition

OSJ taxonomy

Two families of oblivious stream
joins

1. Motivation
2. Understanding equi-joins in TEEs
3. Relational Join for TEEs
4. Privacy-preserving stream joins
5. Conclusions

Agenda

50

Conclusions

● TEEs offer a more private future
● Performance and security issues to solve on the way
● Solutions to three core aspects of management of sensitive data:

○ Adoption of TEEs
○ Efficient Query Processing in TEEs
○ Privacy-Preserving Stream Processing

● Future work
● Our work makes privacy-preserving data processing more accessible

51

VLDB’22 VLDB’23 under
submission

demo@
SIGMOD’23

PhD@
VLDB’20

