Privacy-Preserving Joins in
Untrusted Environments

Kajetan Maliszewski
PhD Defense
4. April 2025

N T

Three states of data matter

At-rest In-transit In-use

4 N O N O

5 &

. AN AN

Three states of customer’s sensitive data in public cloud

Trusted Execution Environments (TEES)

New hardware design: Advantages over other PETSs:
Host
/ os <> ; .(.;.)l; Performance
@ [> Enhanced functionality
VMM APPS Ease of deployment

Adoption of TEEs has been a bumpy road

Simple things get complex:

Host

)

)

Disadvantages over plain CPU:

: Challenging hardware architecture]

Performance bottlenecks]

Security considerations

)

Joins in TEEs can significantly underperform

Multi-tenant scenario:
[Inative CPU EZZITEE

Ty
)
o 101 4
s
= 3
:
2 1071+ ~
o
=
£ ///
2 10-3 l
E\,;\S(“\Q 603\
Thesis Goal

Analyze and improve the privacy-performance trade-off
of TEEs in batch and stream join workloads

Contributions

Problem Solution
Equi-joins in TEEs
€7)| Adoption of TEEs >
VLDB 2022
@ Efficient Query E:> Cracking-Like Join
Processing in TEEs VLDB 2023
() . .
..?. Privacy-Preserving :> Privacy-Preserving
wsamms | Stream Processing Stream Joins
R under
submission

, P1/P2 P3
Honest-but-curious « . ” , i , — :
operational” confidentiality + side-channel protection
adversary

in batch processing in stream processing

Agenda

&)@

2. Understanding equi-joins in TEEs

Performance of equi-joins in TEEs is an open challenge

TEES High Performance
/ a r m \ r? / Multi-te_nant scenario:\
TRUSTZONE - £
AMDQD\ o @
SGX S 10- -

We benchmarked four families of join algorithms

Family

hash-based

sort-merge

radix-based

nested-based

Join Algorithm

Concise Hash Table

Parallel Hash Table

Parallel Sort-Merge

Multi-Way Sort-Merge

Radix Hash Table
Radix Hash Optimized

Radix Sort-Merge

Index Nested Loop

10

TeeBench is a fair referee for enclave benchmarks

TEEBENCH

Algorithm
AN

Input Data

D Data
Generator

s e

Secure Execution API U

Execution
Logs

y

0

_

Operator 0 W
@ Evaluator Logger

~— 10~

QEE Executor

Intel SGX| |AMD SEV| | ARM TZ

Executor | | Executor | | Executor| __.

J

A

TEE AP
2

ALLL

~Encrypted Memory

[~ Plain Memory

CPU Memory

)

Plug & Play experience }

We used TeeBench in all
subsequent works

D)

11

()
How to manage your memory? e .
/ paging

g 60 - ~——GHT throughput g: SGX memory model
Q [|
= : L) 1500 T . .
S [1 i- K CPU Registers \
— 404! V)]) T :
45 : 1000 § L1-L3 Cache
s | P e
o 20 1 : 500 o Secure Cache (EPC)
S | L] L ‘ J
o - 1
— I Main Memory
o= L J
~ 0 ' \ -/
0 50 100
Size of build table [MB]
Lesson learned
Never exceed EPC memory

12

How to do multi-threading?

Mutex is a new bottleneck

Non-blocking primitives avoid
OS interaction

Throughput [M rec / sec]

(OF)
o
L

N
o
1

[
o
I

o

=X

D)

———Concise Hash Table

\Iockless Radix Join

/Radix Join

Number of threads

6

Lesson learned
Design wait-free algorithms

13

Findings Summary

We call for TEE-native solutions

We provide 7 lessons learned

None of the joins is a good choice

TEE-native approaches offer
promising results

14

Agenda

3. Relational Join for TEEs

15

Desiderata for TEE-native processing

-

N

Sequential
access
patterns

~

4 N

Low memory
consumption

N /

-

_

Wait-free
algorithms

~

/

16

Cracking-Like Philosophy

bit by bit in-place radix sort

Partition the data

Perform sequential scans
Consume little memory
TBD: Barrier-free execution

arbitrary computation
7’

17

Two new primitives perform the Cracking-Like Join

Stage is a computation primitive

scan direction \
....... > <€
PO o
h.......
‘_/
in-place
Swap,
p0,p1

\g... ...’/

Cracking Tree is a storage

a bt e

[CS[V[S[V[e[W] ..

b0x b1x
(& V]¢ [V e[V

s [)

b00 b01
Ve £330

stage 2 [*ptr lnum] {*ptr lnum}

18

Cracking-Like Join algorithm

procedure CrkJoin(Relation R, Relation S, int bits):

1:
2 rootR <« INITCRACKINGTREE(R)
3 rootS « INITCRACKINGTREE(S)
& foreach p € [0..(2%" — 1)] do
5 CRACKSTAGEANDBUILD(r00tR, p)
6 CRACKSTAGEANDPROBE(r00tS, p)

19

Partitioned relation forms independent chunks

Pre-Cracking

N ¢
NP

Crack & Join

20

CrkdJoin outperforms the baselines in a multi-tenant

scenario J,\
210% ; over RHO
=
g \over MCJoin
o ’ s pcpedh e,
= e
Q.2 A
10 A
g At \over PaMeCo
- ‘
©
v
—
U 101 E

5 10 15
Concurrent queries

21

CrkdJoin scales in multi-core architectures :@

8 e
n
~ 75 - \\
T CrkdJoin
| Sy
El50-
)
=3
e MCJoi
oin
925 8383232383§83_ /
8 ————— PP gy T ———
(@)
P & = o
E 4}'{}'4}*%% 522513jréégwg,;i‘\PaMeCo

5 10 15 \RHO
Number of threads

22

Findings summary

N
(Efficient query processing in TEEs is

L possible)

N
(Our algorithm achieves up to 1000x

higher performance)

4 N\

CrkdJoin scales to multiple cores

23

Agenda

4. Privacy-preserving stream joins

24

Stream join is a dynamic bipartite graph problem

Stream Enc(Users) Stream Enc(Web clicks)
[J
° [J
° [J

V(1) E()

Vs(t)

ss@sas

ss@sas

25

ss@sas

Ce : : : X
Stream join is a dynamic bipartite graph problem asasse
Stream Enc(Users) Stream Enc(Web clicks)
e® We protect data-dependent
‘é o 3 [information (i.e., graph }
) componentes)
V,_(t V_(t
KU () XU
[

260

ss@sas

Ce : : : X
Stream join is a dynamic bipartite graph problem asasse
Stream Enc(Users) Stream Enc(Web clicks)
e® We protect data-dependent
‘é C Two é [information (i.e., graph }
o o matches ¢ componentes)
VR(t) b /,/’// Vs(t)

27

ss@sas

L : : : X
Stream join is a dynamic bipartite graph problem asasse
Stream Enc(Users) Stream Enc(Web clicks)
e® We protect data-dependent
‘é L é [information (i.e., graph }
L Equahty 4 ® componentes)
VR (t)) ‘\1\\\:\::\ i VS (t)

28

ss@sas

Ce : : : X
Stream join is a dynamic bipartite graph problem asasse
Stream Enc(Users) Stream Enc(Web clicks)
e® We protect data-dependent
Oé " Total é [information (i.e., graph }
* _matches__ ¢ componentes)
V. (t V. (t
(0 () e
L

29

ss@sas

Ce : : : X
Stream join is a dynamic bipartite graph problem =sesse
Stream Enc(Users) Stream Enc(Web clicks)
e® We protect data-dependent
03 o 3 information (i.e., graph
() componentes)
V_(t V. (t
At £ St
We allow for
data-independent leakage
[J

[Stream constraints }

30

ss@sas
We introduce a taxonomy of five leakage functions el

What the adversary sees Informal definition

[LO: deterministic confidentiality } / g ‘w Adversqry 'w g Leak the entire join graph and its history.

Comparable with deterministic

@ encryption
| —0O
O

{ISTORY O @) /

31

ss@sas

We introduce a taxonomy of five leakage functions el

LO: deterministic confidentiality

[L1: randomized confidentiality }

What the adversary sees

/ g ‘l(} Adversary ?l/ z

T+1
O 7
s
e

{ISTORY O

Informal definition
Leak current join graph and volume

patterns, while hiding the graph history.
Similar to randomized encryption.

32

We introduce a taxonomy of five leakage functions

LO: deterministic confidentiality

L1: randomized confidentiality

L2: oblivious lookups

What the adversary sees

/ g ‘l,}R Adversary MS?

\H\ISTORY

ss@sas
ss@sas

Informal definition

For every tuple leak only the
volume pattern.

33

ss@sas
We introduce a taxonomy of five leakage functions el

What the adversary sees Informal definition

LO: deterministic confidentiality / g Wy Adversary ws? For every batch of tuples leak the

@ @@ intermediate join result cardinality.
L1: randomized confidentiality

L2: oblivious lookups T+1 Q_Q

L3: oblivious batching } @ @ Q

\H\ISTORY /

34

ss@sas

We introduce a taxonomy of five leakage functions el

LO: deterministic confidentiality

L1: randomized confidentiality

L2: oblivious lookups

L3: oblivious batching

L4: full obliviousness

What the adversary sees

/ g wR Adversary g/ z

\H\ISTORY /

Informal definition

Leak no information about the data
Or access patterns.

35

ss@sas
We propose two families of stream joins secure against e
leakage functions

/ Oblivious Symmetric Hash\

Joins

SHJ-LO
SHJ-L1
SHJ-L2
SHJ-L3
SHJ-L4

/ Oblivious Computation \

Approach Joins

FK joins:

o OCA-L2

e MERG-L3/L4
o SORT-L3/L4

non-FK joins:
e JOIN-L2/L3 [eEE

micro-batching }

_ /

36

How to avoid oblivious sorting?

Problem
Oblivious joins heavily
rely on OSort

|

Solution
Maintain the collections
sorted

|

—_ L
~— ~— ~—

(R UYS)
key | table

N
WDINDIND = 2
| W T W W I

ss@sas

ss@sas

37

ss@sas

How to obliviously append to a sorted collection? e

micro-batch

window

@
n

U ®

n-m

@

M+m

®

OblivAppend
@OSort micro-batch
@Append dummies

@OI\/Ierge
@Trim dummies

Problem setup

1. window is sorted
2. batch is unsorted
3. n>>m
4. OSort is O(nlog®n)
[If n >> m: O(nlogn)]

OblivAppend as a FK-join building block

micro-batch

window ___

@
n

U ®

n-m

@

M+m

<key,tid>

@
n

—

®
5

ss@sas

ss@sas

OblivAppend
@OSort micro-batch
@Append dummies

@OI\/Ierge
@Trim dummies

FK join
@Emit join matches

39

MERG-L4 foreign-key join

Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
RS = ((RUWER) < 8)U (R < Ws) — Vs

o [
[

ss@sas

ss@sas

40

ss@ass
MERG-L4 foreign-key join asase

Challenges: window correctness, result uniqueness, worst-case padding

)

FK restrictions allows us to split the join:

RS = ((RUWER) < 8)U (R < Ws) gVRU
@

e (=
[

MERG-L4 foreign-key join

ss@sas

ss@sas

Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
RS = ((RUWEg) = S)U (RaWs)
H_/

@

)

MERG-L4 foreign-key join

ss@sas

ss@sas

Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
RS = ((RUWEg) = S)U (RaWs)
%{_J

®

)

S 43

MERG-L4 foreign-key join

Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
RS = ((RUWEg) = S)U (RaWs)

(4) Housekeeping

[o =

)

ss@sas

ss@sas

44

MERG-L4 foreign-key join

Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
RS = ((RUWEg) =< S)U (Rt Wyg)

Security: all operations are oblivious
Performance: O(nlogn)

[o =

)

ss@sas

ss@sas

45

Privacy cost in oblivious stream joins

104

Throughput [K rec / s]

102 .

(= o
) A9 o
_ 6\<\\ ‘5\)‘\ Y

Algorithm

ss@sas

X

ss@sas

{

Privacy without obliviousness has

negligible overhead

|

46

Privacy cost in oblivious stream joins

104 N , _ o
— Privacy without obliviousness has
- negligible overhead
o 10%-
¥ .
= § OCA joins perform well, while
- maintaining low latency
N
g 1,0~
<
|._

) MNP oM

Lol S
N N (O (&

Algorithm

47

Privacy cost in oblivious stream joins

4 1
— i i OCA Privacy without obliviousness has
wn H . .
- : negligible overhead
$ 1074 i
é 5 OCA joins perform well, while
2 1077 maintaining low latency
o i
g 1,0~ i
= i Oblivious index-based solutions
= ! significantly underperform

) \,\9 \,\,\ MV oMW \,\:5 N
SV N O (@ V" oV

Algorithm

48

Contributions summary

Oblivious stream join problem
definition
- /
4 N
OSJ taxonomy
- /
4 N . N
Two families of oblivious stream
L joins)

49

Agenda

Conclusions

e [EEs offer a more private future
e Performance and security issues to solve on the way

e Solutions to three core aspects of management of sensitive data:
o Adoption of TEEs
o Efficient Query Processing in TEEs
o Privacy-Preserving Stream Processing

e [uture work
e Our work makes privacy-preserving data processing more accessible

o,
S
& 3 %

via

o
q P 3

v
RESULTS
reproduced

51

