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Three states of data matter
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At-rest In-transit In-use



Three states of customer’s sensitive data in public cloud
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SW

HW



Trusted Execution Environments (TEEs)
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Advantages over other PETs:New hardware design:

OS

VMM Apps

Host

Performance

Enhanced functionality

Ease of deployment



Adoption of TEEs has been a bumpy road
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Disadvantages over plain CPU:Simple things get complex:

OS

VMM Apps

Host

��

��

Challenging hardware architecture

Performance bottlenecks

Security considerations

��



6

Thesis Goal
Analyze and improve the privacy-performance trade-off 

of TEEs in batch and stream join workloads

Multi-tenant scenario:

Joins in TEEs can significantly underperform



Contributions
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Problem

Adoption of TEEs

Solution

Equi-joins in TEEs

VLDB 2022

Efficient Query 
Processing in TEEs

Cracking-Like Join

VLDB 2023

Privacy-Preserving 
Stream Processing

Privacy-Preserving 
Stream Joins

under 
submission

Honest-but-curious 
adversary

P1/P2 
“operational” confidentiality 

in batch processing

P3
 + side-channel protection 

in stream processing
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Performance of equi-joins in TEEs is an open challenge
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TEEs High Performance

? Multi-tenant scenario:



We benchmarked four families of join algorithms
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hash-based
CHT Concise Hash Table

PHT Parallel Hash Table

sort-merge
PSM Parallel Sort-Merge

MWAY Multi-Way Sort-Merge

radix-based

RHT Radix Hash Table

RHO Radix Hash Optimized

RSM Radix Sort-Merge

nested-based INL Index Nested Loop

Fa
m

ily
Join Algorithm



TeeBench is a fair referee for enclave benchmarks

11

We used TeeBench in all 
subsequent works

Plug & Play experience



How to manage your memory?
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CHT throughput

CPU Registers

L1-L3 Cache

SGX memory model

Secure Cache (EPC)

Main Memory

EPC paging

Lesson learned
Never exceed EPC memory



lockless Radix Join

How to do multi-threading?
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CHT

RHO

Mutex is a new bottleneck

Non-blocking primitives avoid 
OS interaction 

Lesson learned
Design wait-free algorithms

Concise Hash Table

Radix Join



We call for TEE-native solutions
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Findings Summary

We provide 7 lessons learned 

None of the joins is a good choice

TEE-native approaches offer 
promising results
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Desiderata for TEE-native processing
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Sequential 
access 
patterns

Low memory 
consumption

Wait-free 
algorithms



Cracking-Like Philosophy
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bit by bit in-place radix sort arbitrary computation

crack compute

● Partition the data
● Perform sequential scans
● Consume little memory
● TBD: Barrier-free execution



Two new primitives perform the Cracking-Like Join
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Stage is a computation primitive

……

p0

in-place 
swap

p1

 p0,p1

Cracking Tree is a storage 
primitive

scan direction



Cracking-Like Join algorithm
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Partitioned relation forms independent chunks
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CrkJoin outperforms the baselines in a multi-tenant 
scenario
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over PaMeCo

over RHO

over MCJoin



CrkJoin scales in multi-core architectures
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PaMeCo

RHO

MCJoin

CrkJoin



Findings summary
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Efficient query processing in TEEs is 
possible

Our algorithm achieves up to 1000x 
higher performance

CrkJoin scales to multiple cores



Agenda
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Stream join is a dynamic bipartite graph problem
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Stream Enc(Web clicks)Stream Enc(Users)

VR(t) VS(t)
E(t)

G(t) = (VR(t), VS(t), E(t))



Stream join is a dynamic bipartite graph problem
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VR(t) VS(t)
E(t)

We protect data-dependent 
information (i.e., graph 

componentes)

Stream Enc(Users) Stream Enc(Web clicks)

G(t) = (VR(t), VS(t), E(t))



Stream join is a dynamic bipartite graph problem
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VR(t) VS(t)
E(t)

Two 
matches

We protect data-dependent 
information (i.e., graph 

componentes)

Stream Enc(Users) Stream Enc(Web clicks)

G(t) = (VR(t), VS(t), E(t))



Stream join is a dynamic bipartite graph problem
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VR(t) VS(t)
E(t)

Equality

We protect data-dependent 
information (i.e., graph 

componentes)

Stream Enc(Users) Stream Enc(Web clicks)

G(t) = (VR(t), VS(t), E(t))



Stream join is a dynamic bipartite graph problem
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VR(t) VS(t)
E(t)

Total 
matches

We protect data-dependent 
information (i.e., graph 

componentes)

Stream Enc(Users) Stream Enc(Web clicks)

G(t) = (VR(t), VS(t), E(t))



Stream join is a dynamic bipartite graph problem
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Stream constraints

VR(t) VS(t)
E(t)

G(t) = (VR(t), VS(t), E(t))

We allow for 
data-independent leakage

We protect data-dependent 
information (i.e., graph 

componentes)

Stream Enc(Users) Stream Enc(Web clicks)



We introduce a taxonomy of five leakage functions
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L0: deterministic confidentiality Leak the entire join graph and its history. 
Comparable with deterministic 

encryption

What the adversary sees Informal definition



We introduce a taxonomy of five leakage functions
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L0: deterministic confidentiality Leak current join graph and volume 
patterns, while hiding the graph history.

Similar to randomized encryption.

L1: randomized confidentiality

Informal definitionWhat the adversary sees



We introduce a taxonomy of five leakage functions
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L0: deterministic confidentiality For every tuple leak only the 
volume pattern.

L1: randomized confidentiality

L2: oblivious lookups

Informal definitionWhat the adversary sees



We introduce a taxonomy of five leakage functions
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L0: deterministic confidentiality For every batch of tuples leak the 
intermediate join result cardinality.

L1: randomized confidentiality

L2: oblivious lookups

L3: oblivious batching

Informal definitionWhat the adversary sees



We introduce a taxonomy of five leakage functions
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L0: deterministic confidentiality Leak no information about the data 
or access patterns.

L1: randomized confidentiality

L2: oblivious lookups

L3: oblivious batching

L4: full obliviousness

Informal definitionWhat the adversary sees



We propose two families of stream joins secure against all 
leakage functions
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Oblivious Symmetric Hash 
Joins

● SHJ-L0
● SHJ-L1
● SHJ-L2
● SHJ-L3
● SHJ-L4

Oblivious Computation 
Approach Joins

FK joins:
● OCA-L2
● MERG-L3/L4
● SORT-L3/L4

non-FK joins:
● JOIN-L2/L3

micro-batching 
mode



How to avoid oblivious sorting?
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Solution
Maintain the collections 

sorted

Problem
Oblivious joins heavily 

rely on OSort

(1,1) 
(1,1) 
(2,2)

(R ∪ S)
key table

1 R
1 S
1 S
2 R
2 S
3 R



How to obliviously append to a sorted collection?
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m

n

micro-batch

window

m

n

m

n

n-m
n+m

1 OSort micro-batch

2 Append dummies

3 OMerge

4 Trim dummies1 2 3 4

OblivAppend

If n >> m: O(nlogn)

Problem setup
1. window is sorted
2. batch is unsorted
3. n >> m
4. OSort is O(nlog2n)



OblivAppend as a FK-join building block
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m

n

micro-batch

window

m

n

m

n

n-m
n+m

1 OSort micro-batch

2 Append dummies

3 OMerge

4 Trim dummies1 2 3 4

OblivAppend

Emit join matches

FK join

5

5

<key,tid>



MERG-L4
Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:

40

R

WR

S

WS

MERG-L4 foreign-key join



MERG-L4
Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
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R

WR ∪ 
R

S

1

WS

MERG-L4 foreign-key join



MERG-L4
Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
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R

WR ∪ 
R

S

2

WS

⨝

|S|

MERG-L4 foreign-key join



MERG-L4
Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
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R

WR ∪ 
R

WS

S

3

⨝
|WS|

MERG-L4 foreign-key join



MERG-L4
Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
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R

WR ∪ 
R

WS

S

4 Housekeeping

MERG-L4 foreign-key join



MERG-L4
Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
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R

WR ∪ 
R

WS

S
Security: all operations are oblivious
Performance: O(nlogn)

MERG-L4 foreign-key join



Privacy cost in oblivious stream joins
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Privacy without obliviousness has 
negligible overhead



Privacy cost in oblivious stream joins
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Privacy without obliviousness has 
negligible overhead

OCA joins perform well, while 
maintaining low latency



Privacy cost in oblivious stream joins
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Privacy without obliviousness has 
negligible overhead

OCA joins perform well, while 
maintaining low latency

Oblivious index-based solutions 
significantly underperform



Contributions summary
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Oblivious stream join problem 
definition

OSJ taxonomy

Two families of oblivious stream 
joins
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Conclusions

● TEEs offer a more private future
● Performance and security issues to solve on the way
● Solutions to three core aspects of management of sensitive data:

○ Adoption of TEEs
○ Efficient Query Processing in TEEs
○ Privacy-Preserving Stream Processing

● Future work
● Our work makes privacy-preserving data processing more accessible
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VLDB’22 VLDB’23 under 
submission

demo@
SIGMOD’23

PhD@
VLDB’20


