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Three states of data matter
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Three states of customer’s sensitive data in public cloud




Trusted Execution Environments (TEES)

New hardware design: Advantages over other PETSs:
Host
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Adoption of TEEs has been a bumpy road

Simple things get complex:

Host
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Disadvantages over plain CPU:

: Challenging hardware architecture ]

Performance bottlenecks ]

Security considerations
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Joins in TEEs can significantly underperform

Multi-tenant scenario:
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Thesis Goal

Analyze and improve the privacy-performance trade-off
of TEEs in batch and stream join workloads
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2. Understanding equi-joins in TEEs




Performance of equi-joins in TEEs is an open challenge

TEES High Performance
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We benchmarked four families of join algorithms

Family

hash-based

sort-merge

radix-based

nested-based

Join Algorithm

Concise Hash Table

Parallel Hash Table

Parallel Sort-Merge

Multi-Way Sort-Merge

Radix Hash Table
Radix Hash Optimized

Radix Sort-Merge

Index Nested Loop

10



TeeBench is a fair referee for enclave benchmarks

TEEBENCH
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Plug & Play experience }

We used TeeBench in all
subsequent works
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()
How to manage your memory? e .
/ paging

g 60 - ~——GHT throughput g: SGX memory model
Q [ |
= : L) 1500 T . .
S [ 1 i- K CPU Registers \
— 404! V)] ) T :
45 : 1000 § L1-L3 Cache
s | P e
o 20 1 : 500 o Secure Cache (EPC)
S | L] L ‘ J
o - 1
— I Main Memory
o= L J
~ 0 ' \ -/
0 50 100
Size of build table [MB]
Lesson learned
Never exceed EPC memory

12



How to do multi-threading?

Mutex is a new bottleneck

Non-blocking primitives avoid
OS interaction

Throughput [M rec / sec]

(OF)
o
L

N
o
1

[
o
I

o

=X

D)

———Concise Hash Table

\Iockless Radix Join

/Radix Join

Number of threads
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Lesson learned
Design wait-free algorithms
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Findings Summary

We call for TEE-native solutions

We provide 7 lessons learned

None of the joins is a good choice

TEE-native approaches offer
promising results
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3. Relational Join for TEEs

15



Desiderata for TEE-native processing
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Cracking-Like Philosophy

bit by bit in-place radix sort

Partition the data

Perform sequential scans
Consume little memory
TBD: Barrier-free execution

arbitrary computation
7’
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Two new primitives perform the Cracking-Like Join

Stage is a computation primitive
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Cracking-Like Join algorithm

procedure CrkJoin(Relation R, Relation S, int bits):

1:
2 rootR <« INITCRACKINGTREE(R)
3 rootS « INITCRACKINGTREE(S)
&  foreach p € [0..(2%" — 1)] do
5 CRACKSTAGEANDBUILD(r00tR, p)
6 CRACKSTAGEANDPROBE(r00tS, p)
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Partitioned relation forms independent chunks

Pre-Cracking

N ¢
NP

Crack & Join
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CrkdJoin outperforms the baselines in a multi-tenant

scenario J,\
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CrkdJoin scales in multi-core architectures :@
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Findings summary

N
( Efficient query processing in TEEs is

L possible )

N
( Our algorithm achieves up to 1000x

higher performance )

4 N\

CrkdJoin scales to multiple cores
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4. Privacy-preserving stream joins
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Stream join is a dynamic bipartite graph problem

Stream Enc(Users) Stream Enc(Web clicks)
[ J
° [ J
° [ J

V(1) E()

Vs(t)

ss@sas

ss@sas
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ss@sas

Ce : : : X
Stream join is a dynamic bipartite graph problem asasse
Stream Enc(Users) Stream Enc(Web clicks)
e® We protect data-dependent
‘é o 3 [ information (i.e., graph }
) componentes)
V,_(t V_(t
KU () XU
[
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ss@sas

Ce : : : X
Stream join is a dynamic bipartite graph problem asasse
Stream Enc(Users) Stream Enc(Web clicks)
e® We protect data-dependent
‘é C Two é [ information (i.e., graph }
o o matches ¢ componentes)
VR(t) b /,/’// Vs(t)
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ss@sas

L : : : X
Stream join is a dynamic bipartite graph problem asasse
Stream Enc(Users) Stream Enc(Web clicks)
e® We protect data-dependent
‘é L é [ information (i.e., graph }
L Equahty 4 ® componentes)
VR (t) ) ‘\1\\\:\::\ i VS (t)
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ss@sas

Ce : : : X
Stream join is a dynamic bipartite graph problem asasse
Stream Enc(Users) Stream Enc(Web clicks)
e® We protect data-dependent
Oé " Total é [ information (i.e., graph }
* _matches__ ¢ componentes)
V. (t V. (t
(0 () e
L
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ss@sas

Ce : : : X
Stream join is a dynamic bipartite graph problem =sesse
Stream Enc(Users) Stream Enc(Web clicks)
e® We protect data-dependent
03 o 3 information (i.e., graph
() componentes)
V_(t V. (t
At £ St
We allow for
data-independent leakage
[ J

[ Stream constraints }
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ss@sas
We introduce a taxonomy of five leakage functions el

What the adversary sees Informal definition

[ LO: deterministic confidentiality } / g ‘w Adversqry 'w g Leak the entire join graph and its history.

Comparable with deterministic

@ encryption
| —0O
O

{ISTORY O @) /
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ss@sas

We introduce a taxonomy of five leakage functions el

LO: deterministic confidentiality

[ L1: randomized confidentiality }

What the adversary sees

/ g ‘l(} Adversary ?l/ z

T+1
O 7
s
e

{ISTORY O

Informal definition
Leak current join graph and volume

patterns, while hiding the graph history.
Similar to randomized encryption.
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We introduce a taxonomy of five leakage functions

LO: deterministic confidentiality

L1: randomized confidentiality

L2: oblivious lookups

What the adversary sees

/ g ‘l,}R Adversary MS?

\H\ISTORY

ss@sas
ss@sas

Informal definition

For every tuple leak only the
volume pattern.
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ss@sas
We introduce a taxonomy of five leakage functions el

What the adversary sees Informal definition

LO: deterministic confidentiality / g Wy Adversary ws? For every batch of tuples leak the

@ @@ intermediate join result cardinality.
L1: randomized confidentiality

L2: oblivious lookups T+1 Q_Q

L3: oblivious batching } @ @ Q

\H\ISTORY /
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ss@sas

We introduce a taxonomy of five leakage functions el

LO: deterministic confidentiality

L1: randomized confidentiality

L2: oblivious lookups

L3: oblivious batching

L4: full obliviousness

What the adversary sees

/ g wR Adversary g/ z

\H\ISTORY /

Informal definition

Leak no information about the data
Or access patterns.
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ss@sas
We propose two families of stream joins secure against e
leakage functions

/ Oblivious Symmetric Hash\

Joins

SHJ-LO
SHJ-L1
SHJ-L2
SHJ-L3
SHJ-L4

/ Oblivious Computation \

Approach Joins

FK joins:

o OCA-L2

e MERG-L3/L4
o SORT-L3/L4

non-FK joins:
e JOIN-L2/L3 [ eEE

micro-batching }

\_ /

36



How to avoid oblivious sorting?

Problem
Oblivious joins heavily
rely on OSort

|

Solution
Maintain the collections
sorted

|

—_ L
~— ~— ~—

(R UYS)
key | table

N
WDINDIND = 2
| W T W W I

ss@sas

ss@sas
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ss@sas

How to obliviously append to a sorted collection? e

micro-batch

window

@
n

U ®

n-m

@

M+m

®

OblivAppend
@OSort micro-batch
@Append dummies

@OI\/Ierge
@Trim dummies

Problem setup

1.  window is sorted
2. batch is unsorted
3. n>>m
4. OSort is O(nlog®n)
[If n >> m: O(nlogn) ]




OblivAppend as a FK-join building block

micro-batch

window ___

@
n

U ®

n-m

@

M+m

<key,tid>

@
n

—

®
5

ss@sas

ss@sas

OblivAppend
@OSort micro-batch
@Append dummies

@OI\/Ierge
@Trim dummies

FK join
@Emit join matches
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MERG-L4 foreign-key join

Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
RS = ((RUWER) < 8)U (R < Ws) — Vs

o [
[

ss@sas

ss@sas
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ss@ass
MERG-L4 foreign-key join asase

Challenges: window correctness, result uniqueness, worst-case padding

)

FK restrictions allows us to split the join:

RS = ((RUWER) < 8)U (R < Ws) gVRU
@

e (=
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MERG-L4 foreign-key join

ss@sas

ss@sas

Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
RS = ((RUWEg) = S)U (RaWs)
H_/

@
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MERG-L4 foreign-key join

ss@sas

ss@sas

Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
RS = ((RUWEg) = S)U (RaWs)
%{_J

®

)
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MERG-L4 foreign-key join

Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
RS = ((RUWEg) = S)U (RaWs)

(4) Housekeeping

[ o =

)

ss@sas

ss@sas
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MERG-L4 foreign-key join

Challenges: window correctness, result uniqueness, worst-case padding

FK restrictions allows us to split the join:
RS = ((RUWEg) =< S)U (Rt Wyg)

Security: all operations are oblivious
Performance: O(nlogn)

[ o =

)

ss@sas

ss@sas
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Privacy cost in oblivious stream joins

104

Throughput [K rec / s]
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{

Privacy without obliviousness has

negligible overhead

|
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Privacy cost in oblivious stream joins

104 N , _ o
— Privacy without obliviousness has
- negligible overhead
o 10%-
¥ .
= § OCA joins perform well, while
- maintaining low latency
N
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Algorithm
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Privacy cost in oblivious stream joins

4 1
— i i OCA Privacy without obliviousness has
wn H . .
- : negligible overhead
$ 1074 i
é 5 OCA joins perform well, while
2 1077 maintaining low latency
o i
g 1,0~ i
= i Oblivious index-based solutions
= ! significantly underperform
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SV N O (@ V" oV

Algorithm
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Contributions summary

Oblivious stream join problem
definition
- /
4 N
OSJ taxonomy
- /
4 N . N
Two families of oblivious stream
L joins )
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Conclusions

e [EEs offer a more private future
e Performance and security issues to solve on the way

e Solutions to three core aspects of management of sensitive data:
o Adoption of TEEs
o Efficient Query Processing in TEEs
o Privacy-Preserving Stream Processing

e [uture work
e Our work makes privacy-preserving data processing more accessible
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